

Rat-trap bond masonry

Figure 01: Wall construction with rat-trap bonds

Overview

The rat trap bond is a masonry technique, where the block arrangement creates a cavity within the wall, while maintaining the same wall thickness as for a conventional brick masonry wall. The system of a rat trap bond can be applied through any masonry block (CSEB, fly-ash etc.), but has been considered for solid burnt clay bricks in this document. While in a conventional English bond or Flemish bond, bricks are laid flat, in a rat trap bond, they are placed on edge forming the inner and outer face of the wall, with cross bricks bridging the two faces. The main advantage of Rat-trap bond is reduction in the number of bricks and mortar required as compared to English/ Flemish bond. The cavity also makes the wall more thermally efficient. This reduces the embodied energy of brick masonry by saving number of bricks and the cement-sand mortar. It is suitable for use wherever one-brick thick wall is required. Since early 1970s, rat trap bond has been extensively used in every category of building from large institutional complexes, community buildings. Government offices/village panchayats, individual homes both for high income and middle income and also in EWS housing programmes.

CATEGORY	ATTRIBUTE	INPUT	SOURCE
Resource Efficiency	Embodied energy and CO ₂ emission	EE: 479.9 MJ/ m ² ; CO ₂ Emission: 59.5 kgCO ₂ / m ²	Calculations based on data from <u>Strategies for cleaner</u> walling materials in India'- <u>SHAKTI Foundation</u>
	Critical Resource Use	69.8	Source: Calculated critical use index (0-100)
	Current Recycled content	Nil: dependent on brick units used	
	Future reusability	Low. Better reusability if lime mortar is used. High generation of C&D waste.	
	Water use during construction and manufacturing	422.5 liters per m ²	Source: Calculations based on Embodied water in building materials; Strategies for cleaner walling materials in India'-SHAKTI Foundation

0 "	I B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Liei i i i	T
Operational	Durability	High – comparable to	
performance		conventional solid burnt clay	
		brickwork	
	Ease and frequency	Medium frequency of	
	of maintenance	maintenance	
	Impact on cooling or	Cooling energy (kWh/m²/y)	Source: Based on
	heating loads	savings under different	simulations. Values in
		climatic zones	savings from base case: 225mm solid burnt clay brick
		Composite: 2.68 (5%)	with 12.5mm plaster on both
		Warm & humid: 2.3 (5%)	sides.
		Hot & dry: 2.75 (6%)	
		Temperate: 1.06 (7%)	
		Heating energy savings in	
		cold climate: 2.18 (5%)	
	Noise transmission	No data available	
	Thermal mass	305 kg/m ²	Source: Calculations based
	(absorption, storage		on material properties.
	and release of heat)		
	Thermal	U value: 1.79 W/m²K	Source: Strategies for
	performance (flow of		cleaner walling materials in
	heat)		India'-SHAKTI Foundation
User	Familiarity with the	High: in regions where the	
Experience	material	practice has gained wide	
-		acceptance by builders and	
	Modification ability	occupants.	
	Would ability	LOW	
Economic	Construction cost	INR 1207.8/m ²	Source: Calculations based
impact			on Delhi Schedule of Rates
-			2016; data inputs from
	Obill as assissant	M - di (240/) d	Adlakha Associates
	Skill requirement	Medium (31%), the	Source: Calculations based on Strategies for cleaner
		technique is easily learnt by	walling materials in India'-
		masons.	SHAKTI Foundation
	Supply chain	Not applicable	
	Duration of	No data available	
	Construction		
	Job creation	3.20 man-days/m ²	Source: Calculated value;
			Demonstrating Cost Effective
			Technologies - A Case Study of Bawana Industrial
			Workers Housing Project,
			BMTPC Publication
			DIVITI OT UDITORIUTI

